A Theoretical Framework for Understanding the Relationship Between Log Parsing and Anomaly Detection

Abstract

Log-based anomaly detection identifies systems’ anomalous behaviors by analyzing system runtime information recorded in logs. While many approaches have been proposed, all of them have in common an essential pre-processing step called log parsing. This step is needed because automated log analysis requires structured input logs, whereas original logs contain semi-structured text printed by logging statements. Log parsing bridges this gap by converting the original logs into structured input logs fit for anomaly detection.

Publication
2021 International Conference on Runtime Verification (RV)